Exercice PT 3.6.1 : exercice d'intégration des compétences Packet Tracer

Diagramme de topologie

Périphérique	Interface	Adresse IP	Masque de sous-réseau	
ОГОГ	S0/0/1	209.165.201.2	255.255.255.252	
SIEGE	S0/0/0	10.0.0.1	255.255.255.248	
OUEST	S0/0/0	10.0.0.2	255.255.255.248	
OUEST	Fa0/0	10.1.100.1	255.255.255.0	
	S0/0/0	10.0.0.3	255.255.255.248	
	Fa0/0.10	10.1.10.1	255.255.255.0	
SUD	Fa0/0.20	10.1.20.1	255.255.255.0	
	Fa0/0.30	10.1.30.1	255.255.255.0	
	Fa0/0.99	10.1.99.1	255.255.255.0	
Бет	S0/0/0	10.0.0.4	255.255.255.248	
ESI	Fa0/0	10.1.200.1	255.255.255.0	
EAL	S0/0/0	209.165.201.1	255.255.255.252	
FAI	Fa0/0	209.165.200.225	255.255.255.252	
Serveur Web	Carte réseau	209.165.200.226	255.255.255.252	
Comm1	VLAN99	10.1.99.11	255.255.255.0	
Comm2	VLAN99	10.1.99.12	255.255.255.0	
Comm3	VLAN99	10.1.99.13	255.255.255.0	

Table d'adressage

Objectifs pédagogiques

- Configurer PPP avec CHAP
- Configurer un Frame Relay à maillage global
- Configurer le routage statique et par défaut
- Configurer et tester le routage entre réseaux locaux virtuels
- Configurer le protocole VTP et l'agrégation sur des commutateurs
- Configurer des réseaux locaux virtuels sur un commutateur
- Configurer et vérifier l'interface VLAN 99
- Configurer un commutateur comme racine pour toutes les arborescences complètes
- Attribuer des ports à des réseaux locaux virtuels
- Tester la connectivité de bout en bout

Présentation

Cet exercice vous permet de mettre en pratique différentes compétences, notamment la configuration de Frame Relay, de PPP avec CHAP, d'un routage statique et par défaut, du protocole VTP et des réseaux locaux virtuels. Étant donné que près de 150 composants sont évalués au cours de cet exercice, vous ne verrez peut-être pas le pourcentage augmenter à chaque fois que vous configurerez une commande évaluée. Vous pouvez à tout moment cliquer sur **Check Results** et **Assessment Items** pour voir si vous avez entré correctement une commande évaluée.

Tâche 1 : configuration de PPP avec CHAP entre les périphériques

Étape 1. Configuration et activation de l'interface série 0/0/1 sur SIÈGE

Étape 2. Configuration de l'encapsulation PPP sur SIÈGE pour la liaison partagée avec FAI

Étape 3. Configuration de l'authentification CHAP sur SIÈGE

Entrez le mot de passe **cisco**.

Étape 4. Vérification de la connectivité entre SIÈGE et FAI

La liaison entre SIÈGE et FAI doit maintenant être active, et vous devez être en mesure d'envoyer une requête vers FAI. Cependant, cela peut prendre quelques minutes dans Packet Tracer pour que la liaison s'active. Pour accélérer le processus, basculez entre les modes Simulation et Realtime (Temps réel) trois ou quatre fois.

Étape 5. Vérification des résultats

Votre taux de réalisation doit être de 4 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 2 : configuration d'un Frame Relay à maillage global

Le diagramme de topologie représenté plus haut et la table ci-dessous indiquent tous deux les mappages DLCI utilisés dans cette configuration Frame Relay à maillage global. Lisez ce tableau de gauche à droite. Par exemple, les mappages DLCI à configurer sur SIÈGE sont les suivants : 102 vers OUEST, 103 vers SUD et 104 vers EST.

Mappages DLCI						
De/vers	SIÈGE	OUEST	SUD	EST		
SIÈGE	N/D	102	103	104		
OUEST	201	N/D	203	204		
SUD	301	302	N/D	304		
EST	401	402	403	N/D		

Remarque : SIÈGE, OUEST et SUD utilisent tous l'encapsulation Frame Relay par défaut **cisco**. Cependant, EST utilise le type d'encapsulation IETF.

Étape 1. Configuration et activation de l'interface série 0/0/0 sur SIÈGE

Configurez l'interface à l'aide des informations suivantes :

- adresse IP ;
- encapsulation Frame Relay;
- mappages vers OUEST, SUD et EST (EST utilise l'encapsulation IETF) ;
- la trame LMI est du type ANSI.

Étape 2. Configuration et activation de l'interface série 0/0/0 sur OUEST

Configurez l'interface à l'aide des informations suivantes :

- adresse IP ;
- encapsulation Frame Relay;
- mappages vers SIÈGE, SUD et EST (EST utilise l'encapsulation IETF);
- la trame LMI est du type ANSI.

Étape 3. Configuration et activation de l'interface série 0/0/0 sur SUD

Configurez l'interface à l'aide des informations suivantes :

- adresse IP ;
- encapsulation Frame Relay;
- mappages vers SIÈGE, OUEST et EST (EST utilise l'encapsulation IETF) ;
- la trame LMI est du type ANSI.

Étape 4. Configuration et activation de l'interface série 0/0/0 sur EST

Configurez l'interface à l'aide des informations suivantes :

- adresse IP ;
- encapsulation Frame Relay avec IETF ;
- mappages vers SIÈGE, OUEST et SUD ;
- la trame LMI est du type ANSI.

Remarque : Packet Tracer n'évalue pas vos instructions de cartes. Vous devez cependant configurer les commandes. La connectivité complète entre les routeurs Frame Relay doit maintenant être établie.

Étape 5. Vérification de la connectivité entre les routeurs Frame Relay

La carte sur SIÈGE doit ressembler à ce qui suit. Vérifiez que tous les routeurs disposent de cartes complètes.

```
Serial0/0/0 (up): ip 10.0.0.2 dlci 102, static, broadcast, CISCO, status
defined, active
Serial0/0/0 (up): ip 10.0.0.3 dlci 103, static, broadcast, CISCO, status
defined, active
Serial0/0/0 (up): ip 10.0.0.4 dlci 104, static, broadcast, IETF, status
defined, active
```

Vérifiez que SIÈGE, OUEST, SUD et EST peuvent envoyer des requêtes ping l'un vers l'autre.

Étape 6. Vérification des résultats

Votre taux de réalisation doit être de 28 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 3 : configuration du routage statique et par défaut

Cette topologie n'utilise aucun protocole de routage. Tout le routage est effectué par le biais de routage statique et par défaut.

Étape 1. Configuration des routes statiques et par défaut sur SIÈGE

- SIÈGE a besoin de six routes statiques vers les six réseaux locaux distants de la topologie. Utilisez l'argument *next-hop-ip* dans la configuration de route statique.
- SIÈGE a également besoin d'une route par défaut. Utilisez l'argument *exit-interface* dans la configuration de la route par défaut.

Étape 2. Configuration des routes statiques et par défaut sur OUEST

- OUEST a besoin de cinq routes statiques vers les cinq réseaux locaux distants de la topologie. Utilisez l'argument *next-hop-ip* dans la configuration de route statique.
- OUEST a également besoin d'une route par défaut. Utilisez l'argument next-hop-ip dans la configuration de la route par défaut.

Étape 3. Configuration des routes statiques et par défaut sur SUD

- SUD a besoin de deux routes statiques vers les deux réseaux locaux distants de la topologie. Utilisez l'argument *next-hop-ip* dans la configuration de route statique.
- SUD a également besoin d'une route par défaut. Utilisez l'argument *next-hop-ip* dans la configuration de la route par défaut.

Étape 4. Configuration des routes statiques et par défaut sur EST

- EST a besoin de cinq routes statiques vers les cinq réseaux locaux distants de la topologie. Utilisez l'argument *next-hop-ip* dans la configuration de route statique.
- EST a également besoin d'une route par défaut. Utilisez l'argument *next-hop-ip* dans la configuration de la route par défaut.

Étape 5. Vérification de la connectivité des réseaux locaux EST et OUEST vers le serveur Web

- Tous les routeurs doivent maintenant être en mesure d'envoyer une requête ping au serveur Web.
- Le PC OUEST (PC-O) et le PC EST (PC-E) doivent maintenant être en mesure d'envoyer des requêtes ping l'un vers l'autre et vers le serveur Web.

Étape 6. Vérification des résultats

Votre taux de réalisation doit être de 43 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 4 : configuration et test du routage entre réseaux locaux virtuels

Étape 1. Configuration du routage entre réseaux locaux virtuels sur SUD

À l'aide de la table d'adressage, activez l'interface Fast Ethernet 0/0 sur SUD et configurez le routage entre réseaux locaux virtuels. Le numéro de sous-interface correspond au numéro de réseau local virtuel (VLAN). VLAN 99 est le réseau local virtuel natif.

Étape 2. Test du routage entre réseaux locaux virtuels sur SUD

SIÈGE, OUEST et EST doivent maintenant être en mesure d'envoyer des requêtes ping vers toutes les sous-interfaces de SUD.

Étape 3. Vérification des résultats

Votre taux de réalisation doit être de 56 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets. Les routeurs sont maintenant entièrement configurés.

Tâche 5 : configuration du protocole VTP et de l'agrégation sur les commutateurs

Étape 1. Configuration des paramètres VTP sur Comm1, Comm2 et Comm3

- Comm1 est le serveur. Comm2 et Comm3 sont des clients.
- Le nom de domaine est CCNA.
- Le mot de passe est **cisco**.

Étape 2. Configuration de l'agrégation sur Comm1, Comm2 et Comm3

Les ports d'agrégation de Comm1, Comm2 et Comm3 sont tous les ports reliés à un autre commutateur ou à un routeur. Définissez tous les ports d'agrégation en mode d'agrégation et affectez VLAN 99 comme réseau local virtuel natif.

Étape 3. Vérification des résultats

Votre taux de réalisation doit être de 81 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 6 : configuration des réseaux locaux virtuels sur le commutateur

Étape 1. Création des réseaux locaux virtuels et attribution de noms

Créez les réseaux locaux virtuels suivants sur Comm1 uniquement et attribuez-leur des noms :

- VLAN 10, nom = Faculté/Personnel
- VLAN 20, nom = **Participants**
- VLAN 30, nom = Invité (par défaut)
- VLAN 99, nom = Gestion et Natif

Étape 2. Vérification que les réseaux locaux virtuels sont envoyés vers Comm2 et Comm3

Quelle commande affiche les informations suivantes ?

VTP Version	:	2
Configuration Revision		8
Maximum VLANs supported locally		64
Number of existing VLANs		9
VTP Operating Mode	:	Client
VTP Domain Name	:	CCNA
VTP Pruning Mode	:	Disabled
VTP V2 Mode	:	Disabled
VTP Traps Generation	:	Disabled
MD5 digest	:	0xF5 0x50 0x30 0xB6 0x91 0x74 0x95 0xD9
Configuration last modified by ().(0.0.0 at 3-1-93 00:12:30

Quelle commande affiche les informations suivantes ?

VLAN	Name	Status	Ports		
1	default	active	Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig1/1, Gig1/2		
10	Faculté/Personnel	active			
20	Participants	active			
30	Invité(par défaut)	active			
99	Gestione et Natif	active			
<résultat omis=""></résultat>					

Étape 3. Vérification des résultats

Votre taux de réalisation doit être de 84 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 7 : configuration et vérification de VLAN 99

Étape 1. Exécution des étapes suivantes sur Comm1, Comm2 et Comm3

- Configurez et activez VLAN 99.
- Configurez la passerelle par défaut.
- Vérifiez que Comm1, Comm2 et Comm3 peuvent maintenant envoyer des requêtes ping vers SUD à l'adresse 10.1.99.1.

Étape 2. Vérification des résultats

Votre taux de réalisation doit être de 92 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 8 : configuration de Comm1 comme racine pour toutes les instances Spanning Tree

Étape 1. Configuration de Comm1 comme pont racine pour toutes les instances Spanning Tree, y compris les VLAN 1, 10, 20, 30 et 99

Remarquez que Comm3 a remporté la guerre des racines et est actuellement le pont racine pour toutes les instances Spanning Tree. Définissez la priorité à 4096 sur Comm1 pour toutes les arborescences complètes.

Étape 2. Vérification que Comm1 est maintenant le pont racine pour toutes les instances Spanning Tree

Seuls les résultats pour VLAN 1 sont affichés ci-dessous. Cependant, Comm1 doit être la racine de toutes les instances Spanning Tree. Quelle commande affiche les informations suivantes ?

VLAN0001							
Spanning tr	ee enable	d pro	otocol iee	е			
Root ID	Priority	40	097				
	Address	00	DD0.BC79.4	в57			
	This brid	lge is	s the root				
	Hello Tim	ie 2	2 sec Max	Are 20 s	ec Forward Dela	av 15	sec
Bridge ID	Priority	4 ()97 (prio	rity 4096	svs-id-ext 1)		
211090 12	Address	00	D0.BC79.4	B57	5,5 10 010 1,		
	Aging Tim	ne 300))	201			
	119±119 ±±11		5				
Interface	Role	Sts C	Cost	Prio.Nbr	Туре		
Fa0/1	Desg	FWD 1	19	128.3	Shr		
Fa0/2	Desg	FWD 1	19	128.3	Shr		
Fa0/3	Desg	FWD 1	19	128.3	Shr		
Fa0/4	Desq	FWD 1	19	128.3	Shr		
Fa0/5	Desq	FWD 1	19	128.3	Shr		
<résultat omi<="" td=""><td>.s></td><td></td><td></td><td></td><td></td><td></td><td></td></résultat>	.s>						

Étape 3. Vérification des résultats

Votre taux de réalisation doit être de 96 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 9 : affectation des ports aux réseaux locaux virtuels

Étape 1. Affectation de ports sur Comm2 aux réseaux locaux virtuels

Packet Tracer évalue uniquement les ports reliés à PC1, PC2 et PC3.

- Configurez le port en mode d'accès.
- Affectez le port à son réseau local virtuel.

Les mappages de port des réseaux locaux virtuels sont les suivants :

- VLAN 99 : Fa0/1 Fa0/5
- VLAN 10 : Fa0/6 Fa0/10
- VLAN 20 : Fa0/11 Fa0/15
- VLAN 30 : Fa0/16 Fa0/20
- Non utilisés : Fa0/21 Fa0/24 ; Gig1/1 ; Gig1/2

Par sécurité, désactivez les ports non utilisés.

Étape 2. Vérification des affectations des ports aux réseaux locaux virtuels

Quelle commande a été utilisée pour obtenir les résultats suivants présentant les affectations des réseaux locaux virtuels ?

VLAN	Name	Status	Ports
1	default	active	Fa0/5, Fa0/21, Fa0/22, Fa0/23 Fa0/24, Gig1/1, Gig1/2
10	Faculté/Personnel	active	Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/10
20	Participants	active	Fa0/11, Fa0/12, Fa0/13, Fa0/14 Fa0/15
30	Invité(par défaut)	active	Fa0/16, Fa0/17, Fa0/18, Fa0/19 Fa0/20
99	Gestion et Natif	active	
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005	trnet-default	active	

Étape 3. Vérification des résultats

Votre taux de réalisation doit être de 100 %. Si ce n'est pas le cas, cliquez sur **Check Results** pour identifier les composants nécessaires qui ne sont pas complets.

Tâche 10 : test de la connectivité de bout en bout

Il est possible que Packet Tracer mette un certain temps à converger. Cependant, PC1, PC2 et PC3 parviendront finalement à envoyer des requêtes ping. Testez la connectivité vers PC-O, vers PC-E et vers le serveur Web. Si nécessaire, alternez entre les modes Simulation et Realtime (Temps réel) pour accélérer la convergence.